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In this paper we present new multigrid line smoothers for the solution of higher
order discretizations of convection-dominated problems directly. The behavior of the
smoothers is analyzed theoretically with Fourier smoothing and two-grid analysis.
A parallel tri-line variant is presented and evaluated. The smoothers are applied
to scalar convection-diffusion problems, discretized with limiters and systems of
incompressible Navier—Stokes and Euler equations199s Academic Press
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1. INTRODUCTION

Multigrid methods are generally accepted as fast efficient solution methods, especially fc
elliptic problems when the discretization results inNMrAmatrix [22]. For these problems,
basic iterative methods, like point or line Gauss—Seidel methods are not satisfactory solve
but they are efficiensmoothersThis means that, instead of solving all frequencies of the
error components, they efficiently reduce the high frequency components and therefo
smooth the error between numerical and exact solution. A smoother is one essential p:
of a multigrid method. The other part is the coarse grid correction, which is based on th
knowledge that a smooth error can be well represented on coarser grids. On a coarser g
a smoother can then reduce the “high” frequencies corresponding to this grid. By repeatir
this procedure on several grids, the multigrid solution method is obtained. More details o
multigrid can be found in [2, 10, 20, 24]. The multigrid method is also commonly used for
singularly perturbed problems, like convection-dominated (systems of) equations. Here, t
erroris notonly smoothed, itis also reduced along the characteristic direction of a convectic
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operator. For these problems, however, good smoothers are not necessarily the same
as in the full elliptic case. Basic iterative methods with grid point ordering “against the
flow,” for example, do not smooth the error. Also the quality of a smoother depends on tt
discretization used for the convection terms. Efficient smoothers for convection-dominat
problems are the main topic of this paper.

Higher order finite difference or finite volume discretizations of convection-dominatec
problems, on the basis of van Leet’'sschemes [21], do not result M-matrices and their
multigrid treatment is not as efficient as for Poisson-like problems. Usuafigheme dis-
cretizations are solved indirectly with a defect correction technique, where multigrid is use
for solving the first-order discretization. The higher order discretization scheme is then us
as an outer iteration. In the defect correction approach often the outer iteration determir
the convergence speed, which can be slow if the first and higher order discretizations :
very different.

A second popular approach, in which higher order discretizations are solved directly
multigrid, is with the help of multistage smoothers [12, 24]. These smoothers are poil
smoothers of Jacobi type and are, therefore, limited in their robustness with respect
problems discretized on grids with stretched cells.

In this paper, instead of the two approaches mentioned above, a robust alternative is |
sented, in which the higher order upwind discretization is also solved directly in multigrid
We present line smoothers based on a splitting of the operator into a “positive” part on tl
left-hand side and the remaining part on the right-hand side. Positive parts (a positive m:
diagonal and nonpositive off-diagonal elements) are required in the left-hand side, in orc
to assure a splitting to have smoothing properties. The smoothers based on this splitting
be of alternating, symmetric, or zebra type and are called KAPPA smoothers here.

The resulting splitting is analyzed with Fourier smoothing analysis [2] for a linear
convection diffusion equation discretized with thescheme, similar to Wesseling [24]
(for the standard upwind discretization). Furthermore, two-grid Fourier analysis [20, 5] i
applied.

A parallel variant is a tri-line zebra smoother, due to the fact that a higher order 11
upwind stencil contains four elements. It is evaluated whether the parallel smoother is
interesting competitor for the robust (nonparallel) symmetric alternating line smoother. |
Section 2.1 we will briefly describe the discretization of the convective terms. In Section 2
the multigrid solution method with the new splitting for the line smoothers is introduced
The theoretical results are compared to the actual multigrid convergence for model proble
in Section 3. In the two-grid analysis we observe the discrepancy between the scaling
convection and diffusion on fine and coarse grids, as is studied in [4, 3] and mentioned in [!
For the “inflow/outflow” problems evaluated here we will not see the negative effect of thi
different scaling on the multigrid convergence, due to the influence of the combination
Dirichlet boundary conditions and the line smoothers, which reduce not only high frequenc
but also low frequency error components. Overweighting of residuals [4], or a Kryloy
acceleration [15] as a way to improve the convergence (mainly for rotating convectiol
dominated problems) is not needed here and, therefore, not adopted.

The multigrid solution method used here is the nonlinear FAS [2] scheme, because \
will also investigate the influence on the multigrid convergence of discretization scheme
with limiters. Discretizations with limiters lead to nonlinear discretizations, even for lineal
problems. Numerical tests for linear and nonlinear convection-dominated scalar probler
are performed on fine grids in Section 5, where the new method is compared with the def
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correction approach. Furthermore, the smoothers are tested for systems of incompressi
Navier—Stokes and compressible Euler equations.

2. THE DISCRETIZATION AND THE SOLUTION METHOD

2.1. Higher Order Upwind Discretization of a Convection Term

We consider a linear variant of the convection—diffusion equation,
Lo = (ag)x + (bp)y —eAg = f, (1)

where 0< € « 1, Adenotesthe Laplaciaa, b, andf are givenfunctions possibly depend-
ing onx andy. We discretize (1) on a grid with mesh siag = hy = h. The diffusion
term is approximated with the standard five point approximation. For the convection term
(a¢)x and(a¢)y, we distinguish between different upwind approximations. In general a
good discretization for convection should obey two important requirements:

1. The discretization should l2(h?) accurate (at least for “smooth” parts of a solution).
2. The discretization should be monotone. This means that a solution should not conta
wiggles, spurious oscillations that result in local unphysical extrema.

The standard upwind discretization f@)y looks (fora = const> 0) like
a
(@g)x = H(¢i,j —¢i—1j) = L1 (2

However, it is well known that this discretization scheme is oBlgh) accurate. A first
choice for obtaining second-order accurate schemes with a linear discretization is the cla
of xk-schemes, which work satisfactorily for a large class of CFD problems, including
the incompressible Navier—Stokes equations. d4sehemes are, however, not monotone,
which means that they have to be modified (with limiters) for CFD problems containing
strong gradients or boundary layersschemesresultin alinear discretization which enables
them to be easily analyzed (for example, with Fourier analysis). The discretizatiag)Qf

with van Leer'sk-schemes [21] looks (fax = const> 0) like

(a¢)x - H[(‘plj —d’l—l,J)— E(‘bl,] —¢|—1,])+T(¢|+1.J _¢|.J)— T(¢|—l,j _¢|—2,J)]-
- L+ L + L+ L, )

Fora < 0 similar formulae are found, and the evaluatiogis straightforward. Further-
more, ifa = a(x, y) # const, (3) is easily changed by introduciag,> j anda;j_1/2 j in

a standard finite difference or volume discretization. The resulting discretization obtaine
with thek-scheme is denoted Hy,. The stencil for (1) with (3Ya, b = const> 0), and

k = 0 (called Fromm'’s scheme) looks like

0
. 1/4 [0 -1 0
[Lal=[1/4 -5/4 34 1/4 O]+ | 3/4 |+5|-1 4 -1/. (4
—5/4 0 -1 0

1/4
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The Fromm scheme is second-order accurate, whereas the cubic interpolation upwind (C
schemedx = 1/3) [1] is formally third-order accurate in space, which can be confirmed by
Taylor’s expansion.

It can be seen from (4) thatdiscretizations in general do not resultvbrmatrices [22]
for which it is well known that basic iterative methods, like Gauss—Seidel, are converge
methods. Using the basic iterative methods as a smoother directly mads actually to
adivergingmethod. For multigrid smoothers it is essential that the discretization is take
into account. Positive parts; + L, of the second-order discretization (3) will be used
in the left-hand side. Positive parts (a positive main diagonal and nonpositive off-diagon
elements) are required in the left-hand side, in order to assure that it is invertible. Positivi
is the point of departure for every smoothing method known.

As already mentioned, discretizations wittschemes produce unphysical oscillations
near sharp gradients or discontinuities in a solution. Therefore, total variation diminishir
(TVD) concepts have been introduced, preventing a solution from oscillating. An overvie
of the TVD schemes is given in [11] and also in [25]. The basis for the so-called monotor
TVD discretizations is the introduction of limiters. Limiters result in nonlinear discretiza-
tions even for linear problems. We will evaluate the multigrid convergence for discretizatior
with different limiters. A good starting point for the discretization with limiters is the dis-
cretization of (1) with (3) and = —1, the second-order upwind scheme, which looks
(for a > 0) like

1 1
(@p)x = %[(fﬁi,j —¢i—1,j)+§(¢i,j —¢i—1,j)—§(¢i_1,j —¢i—2j)] =Li+Ls+L,. (5

The second-order upwind scheme is introduced as a first-order upwind stheptas
additional termd_, andL, . (Again a similar splitting is found foa < O or fora andb
functions depending onandy.) To satisfy TVD conditions the additional terrhg andL,
are multiplied by limiters which are functions of the ratio of local differences of unknowns

1 1
(@p)x = %[(‘f’i,j —¢i_1j) + Ew(Ri—l/Z)(d)i,j —Pi_1j) — éw(Ri—3/2)(¢i—l.j —di2))]
= L, + Lo + L, (6)

Here,R _12 = (¢i11.j—¢i.j)/ (@i, —di-1j)andR 32 = (¢, —di—1.)) /(@i —1,j —Di—2,})-

Itis well-defined in which region in &, ¥ (R))-diagram the limiting function (R) should
lie, so that the resulting convection discretization is monotone and higher order accur:
[11, 25] (also shown in Figs. 1 and 2). In recent years many limiters have been propos
and evaluated, since for every problem (compressible equations with shocks, turbuler
modeling, etc.) a corresponding best limiter can be constructed. Here we sum up so
of these limiters for which we investigate the multigrid convergence. Investigations o
accuracy with limiters for model problems and applications is done in many other paper
We distinguish two classes of limiters. For the first class of limiters we will present ¢
robust convergence improvement in Section 4. The limiters in this class do not follow par

of the line¥(R) = 2Rin the (R, ¥ (R))-plane. Some well-known limiters in this class are
2

W(R) = F;Z—fj, van Albada limiter )
IR+ R
R+1°

V(R) = Van Leer limiter (8)
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FIG. 1. Three limiters and the monotonicity region iR, ¥ (R))-diagram.

(RI+R)(BR+ 1)
2(R+ 1)2

Y(R) = , ISNAS limiter [25]. 9)

(The limiters for which we do not give an explicit reference are well known and can be
found in [11, 25].) The limiters (7), (8), and (9) are presented (Ra¥ (R))-diagram in
Fig. 1. It can be seen that for all the limiters examined (6) is identical to (5Rfef 1,
which ensures second-order accuracy in smooth regions.

The second class of limiters is the classttbng compressiviimiters, whose function
values are R near the origin in théR, ¥ (R))-diagram. Examples are the Superbee limiter,
the SMART limiter, and the limited = 1/3 scheme:

¥ (R) = max[Q min(2R, 1), min(R, 2)], Superbee limiter (10)
¥ (R) = max [O, min (4, ZR+ % ZR)], SMART limiter [8] (11)

. 2 1 -
Y (R) = max [0, min (2, §R+ 3 ZR)], k = 1/3 limiter [14]. (12)

These limiters are shown in Fig. 2. When the values frdfa2e chosen the resulting
discretization foa > 0 becomes

(ag)x = %[_¢i,j + ¢itjl. (13)

The negative main diagonal element already indicates that fast convergence with iterati
methods for the steady equation discretized with a limiter from class 2 might not be trivial

As in (5), it can be seen from (6) and from the definition of the limiters, thain (6) is
always positive.
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FIG. 2. Three “2R"-limiters (they follow the functiom = 2R near the origin) and the monotonicity region
in a(R, ¥ (R))-diagram.

Boundary discretization. The schemes used here employ more than nearest neighbor
which means that special care is needed near boundaries. We discretize the first line of ¢
near a boundary with the central difference scheme (1). In the numerical experiments,
it was found really necessary to use second-order accurate schemes near boundaries in ¢
to keep the overall accuracy. Wiggles, spurious oscillations due to the central differencin
were never observed in the test examples evaluated.

2.2. The Multigrid Solution Method

A general representation ab¢ looks like

Lap=>_ Y a2, Bitiun ity (14)

fux€d pyed

with coefficientsal?, coming for the second-orderformulation or from a linearization
(in our case, Picard) of the limited formulation and a set of indites {—2, —1, 0, 1, 2}.
By using the stencil notatioh, can be rewritten as

(2)
392

2
391

Lo=|a% a% &g ajg ayp |- (15)

@

ap_

@

ap”

We will solve the discretization from (15) directly with a multigrid solution method. Here,

we will introduce two splittings for which it will be shown in the next section that they are
robust smoothers for discretizations with (3).

1

2
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The first splitting introduced is a robust smoother for latgenge (lineak-scheme),
-1<« <058

The second splitting is robust for a smallerange,—0.3 < « < 0.5, but it is easier to
program for systems of equations. Both splittings are not good smoothers for valies of
near 1 (the central difference scheme).

All multigrid components, except the smoother, are standard components, which w
will not discuss in detail. The restriction operator is the full weighting operator [20]; the
prolongation is bilinear interpolation. The discretization on the coarse grids is the direc
discretization from the differential equation on the coarse grid. For problems with discon
tinuities and the discretization with limiters we will see that it is worth comparing-the
discretization on coarse grids, callfdl second-order formulatioin [7, 19] with theL
discretization on coarse grids, calletixed discretization formulatiofT].

Smoother. Therobustsmoother we willintroduce is of alternating symmetric type. Lines
are processed i+ andy-directions in forward and backward lexicographical ordering. This
smootherisdenoted &= S ST S* S, For particular problemsitis, of course, possible to
choose the direction of line smoothing “with the flow.” A parallelizable variant is explained
at the end of this subsection.

A part of the robust smoother, tieline sweep for a forward ordering of grid lineS’',
is explained in detail. The derivation of the other parts is straightforwardSFor, (15)
is split as follows:

Lo=LY,— (LYo —La) =LY+ L% (L") (16)
with
0 0
0 0
Lip=L"+L°=]0 0 0 o0 of[+]|0 a% ag? ag? o @7)
2
a1 0
2
a5 0
= Ly 9™ = (L, — Lo)¢™ + f. (18)

Thea/? elements in (17) are the positive pakts+ L,, or L1, in the discretizations (3),
(6) to be discussed below. The two splittings differ in the way that coeffic&ht8 are
defined. We call the smoothers based on both splittings “KAPPA smoothers” here.
Splitting 1. The coefficientsa’? include the first-order upwind operatdy;, plus a
“positive” part of the second-order operatdr; in (3), (5), or (6) plus the parts of the
diffusion operator.
Splitting 2.The coefficientgl/? correspond only to the first-order upwind operatgr
(2) of a discretized equation (plus the parts of the diffusion operator). The smoother fron
Splitting 2 is less robust, but it is more generally applicable, since a first-order upwinc
discretization is in the left-hand side and the remaining part is in the right-hand side. Othe
(point) smoothers in the literature (for example, in [19]) for second-order discretizations
are more often based on Splitting 2.
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Other splittings, based on rewriting (6) like [11]:

1Y (R_32)

(a¢)x—— 1+ ‘IJ(R. 12) 5 Re o2

(Pi,j — di-1j)

did not lead to better line smoothers, although the coefficient between square bracket:
also guaranteed to be positive by the properties of limiters.

Choosing thd =+ 2 variables also irL.? gives us another alternative, which does not
satisfy the positivity rule. This smoother, resulting in a pentadiagonal solver instead of t
tridiagonal solver, is not considered here.

The meaning of the superscrigts, 0, +} in (16) is clear when we consider (18) for a
fixed line (i, jo)i<i<n:

L0¢* =f + L0¢m _ ((L7 + LO)¢m + L+¢m+l)_ (19)

L° corresponds to the unknowns which are smoothed simultanedusig.applied to the
old approximatiorp™, and forL™ new values are already available [20], which is dictated
by the ordering of the grid lines. Inserting an underrelaxation paramete(19) leads to

™ = we* + (1 — w)p™. (20)

With v = 1 we regain (18). We can rewrite (19) in the correction formulation, where durinc
the smoothing iteration a correctiép™** is calculated which is then added to the current
approximation with underrelaxation parameter
L05¢m+1 = f — ((L7 + LO)¢m + L+¢m+1)
L08¢m+1 = f — L2¢m+1/2 (21)
¢m+1 — d)m + w8¢m+l' (22)
In (21) operatol, is appearing in the right-hand side, ap*/2 denotesp™ or ™ it
is the latest value available.
As an example and in order to explain the difference between Splitting 1 and Splitting
we determind_%, L~¢, andL*¢ fora > 0 andb > 0in (1) (the example we discussed

in detail in Section 2.1). For theline KAPPA smootheS* from Splitting 1, we then find
with (2), (3):

co-[105) B 655
- {—%} b
o [3E)
(e R PR
BE e B e
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From Splitting 2 we obtain

0 a e a 4 b €
o= |- — 2|9t |t t | ot |~z | 4

Lty — (b /11—« N b /5- 3« €l

=n\"a )|t TR T ) e

- fa /1— a/1-3 a+b /143
e NEICN

1 b /1
BEr B e

Notice that both splittings are identical for= 0.

Remark. Note that the smoothers explained here for diffusion-dominant problems, ol
for problems with diffusion and convection of the same size are well-known line smoothers
resulting in excellent multigrid convergence rates.

A parallel variant. The symmetric alternating line smoother is a sequential smoother.
The right-hand side of a new linjg (19) to be processed depends on just updatealues
of lines jo — 1 andjo — 2 (or jo + 1 andjo + 2). In order to have a parallel smoother, it is
desirable that this dependency is minimized. One possible way is by processing the lin
in a Jacobi-type iteration; only old valug8' are then appearing in the right-hand side of
(19) andL ™" is empty. However, experience has shown that Jacobi smoothers are often le
efficient than smoothers in which recent values are used for new lines.

Another (more efficient) possibility, which is investigated here, is to use a “zebra-type’
smoother in order to achieve parallelism. With the longer stencils (3), (14), each third line
is independent and can be processed at the same time. This means that a parallel zebra
variant is a tri-line zebra smoother, see Fig. 3.

1

FIG. 3. Thex-lines that can be processed independently at the same time by a tri-line zebra smoother.
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In case of a tri-line smoother the ordering of processing the three lines influences tl
smoothing behavior. A 1-2-3-processing (see Fig. 3) results in other convergence ra
than a 1-3-2-processing of lines. In order to obtain a robust smoother for many convecti
directions, we adopt an ordering of 1-2-3, followed by 1-3-2 as one iteration okities)
tri-line smoother. Note that the alternating tri-line smoother which we will evaluate, is nov
as expensive as the alternating symmetric line smoother.

Generalization to 3D. One possible generalization for the smoother presented abov
to 3D problems is by means afiultiple semicoarseningnstead of keeping the standard
multigrid sequence, in which then an alternating symmetric line smoother in three directiol
or for some problems a plane smoother is necessary, one might change the coarsel
sequence and include semicoarsening in one or two directions only, as is done in [23].
using the flexible multiple coarsening grid sequence from [23], it is possible to obtain a 3
robust solution method based on line smoothing.

3. FOURIER ANALYSIS

3.1. General Definitions, Remarks

Fourier analysis is used to study the smoothing and convergence properties of the
multigrid solution method, like in [2, 20, 24]. Itis valid, if we deal with linear (or linearized)
operators with constant (or frozen) coefficients (assume “periodic” boundary condition:
and extend all occurring operators to an infinite géigl := {x = k«h, kyh) : ks, ky € Z}.

On Gy we consider infinite-grid functions, which are linear combinations of the Fouriel
componentsy(0, x) = €8 = &tk with grid pointsx € Gp, k = (K, ky) and
Fourier frequencie@ = (6, 6y) € R?.

Fourier components with9| := max{|6x|, |6y|} > 7 are not visible orGy, since they
coincide with components*?, whered = 6 (mod ). Therefore, the Fourier spaek =
span{e? : 0 € ® = (—x, 7]?} contains any infinite grid function 0@y, [20]. The basis
functionse? e ¢" are orthogonal with respect to the inner product:

1 -
(vn, wp) = lim_ s > vn(khywn(kh)  with h = (h, h); vh, wy € ™. (25)

[kj<m

The Fourier space” can be divided into four-dimensional subspadks,harmonic$20]
(see Fig. 4):

eh = spar{ (0%, x) = € kO™ g, ay € {0, 1}, (26)
where

X € Gp; 8% € ©%° = (—7/2, 7/2)?,
0 = (Ox — ax SigN(Ox)m, Oy — ay SIGNOy)TT).
The discrete solutiogy, and the current approximatiapfl' can be represented as linear

combinations of the basis functiog&? e &". This carries over to the errof" = ¢™ — ¢,
before and™! = ¢™*1 — ¢, after a relaxation step or a two-grid cycle.
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A
Ly
(s
910 = %0
x X
= I
Ol
m
o1 =5 o°!
x x
-7

FIG. 4. High and low frequency regions ef with four harmonics.

3.2. Smoothing Analysis

In case of Fourier smoothing analysis we look at the influence of a smoothing operatc
Sto the high frequency error components. The multigrid idea consists of the assumptio
that high frequency error components are smoothed by the relaxation and the low frequen
components are reduced by the coarse grid correction. If standard coarsening is selec

(H = 2h) the componenig(6°°, x) € ¢"are also visible on the coarse géig, whereas the
other components(8**, x) with (ay, ay) = (1, 0), (0, 1), (1, 1) aliase with they(6°°, x)
[20]. This observation leads to the distinction between high frequeficie®" := (8 :
(ax, ay) € {(L, 1), (1,0, (0, 1)}} and low frequencied € @' := @°°with ® = ' U A"
(see Fig. 4). The distinction obviously depends on the coarsening strategy.

The relaxation procesS applied to an error component’ (@) = A™*? results in
v™1(0) = Su™(0), which follows from (19), (20), and the identity>¢, = f. Then, (19)
and (20) for the forwara-line smootheiS* lead to

ek = [(1— w)L°%0) — wl ()] [L°O) + wl ()]
= A" = [1-w)[®— ol ] [LO+wlt] AT, (27)

This means that the error amplitude is reduced by the fact@y,
1(8) =[(1 - )L°%0) — L= (0)] - [L°%0) + oL (@], (28)

which is called the amplification factor for the frequergtyL%(0), L~ (6), andL*(0) are
the Fourier symbols of the corresponding operators.
The definition of the smoothing factor is now given for thdine smoother by
= sup|u(8)|. (29)
fcoh
If v relaxation steps are performed the smoothing factor is given’by he definition of
the smoothing factor for the symmetric alternating line smoother is straightforward.
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As mentioned above Fourier analysis cannot take special boundary conditions into &
count. It has been observed that sometimes in connection with Dirichlet boundary conditio
a more realistic prediction of the smoothing factor is obtained by leaving out the Fourie
frequencies witloy = 0 or6y = 0 (see [24] and the references therein). This leads to &
definition of the smoothing factor in case of Dirichlet boundary conditions [24]:

1o = sup |u(®)| with ©p := @"\{0: 6, =0orb, = 0}. (30)
9€®D

3.3. Two-Grid Analysis

Analogous to Fourier smoothing analysis we also perform Fourier two-grid analysis, ¢
that the effect of the coarse grid correction and the transfer operators is taken into acco
theoretically. Erron™ is transformed by a two-grid cycle as

m+l _ SVZ(| _ Ph(LH)_thLh)SVlUm, vm+1 — SUZC# Svlvm; Um+1 — Mrl{lvm' (31)

The spectral radiug (M) of the linear two-grid operatoM,! is an indication of the
asymptotic speed of the multigrid convergence.

The coarse grid correction opera@f leaves the (four-dimensional) space of harmonics
el (26) with an arbitrany® € 6% = @°\{6: L (26°%) = 0} invariant,Cl : ¢} — &}
(see [20]). This is a consequence of the following relations of the transfer and coarse g
operators:

Ln:eh — b, Ly :sparg(6,x)} — sparip(9.x)}, (32)
Ra:ef) — sparp(0,%)}, Pn:sparfp(8,x)} — &),  with6 € Ogo.  (33)

The same invariance property is true for each of the above line smoothers (except the tri-|
smoother)S: 82 — 52 (0 € ©%), Hence M/ is orthogonally equivalent to a block matrix
consisting of 4x 4 blocks which will be denoted byl (8) := M} o (0 € ©99) [20]. We
can determine the spectral radjp@ ) by calculating the spectral radii of44 matrices:
pr=p(My) = sup p(My'(6)) = sup p(0). (34)
0600

To obtain the representation of the4 blocksM, (8) = S2(1 — Py(Lw)*RyLn) S the
Fourier symbols of the multigrid operators for each harmonisrf;ihave to be calculated:

M(HOO) v
2 _ 1£(6%%)
S= (6% :
MCas!
£n(6°0)
- Ln(6
Ln n(@™) [ 0% , (35)
NGRS
Rh = (Ra(8°9), Rn(69), Rn(8°Y), Ra(8™Y),
P = (Ph(6%9), Pn(8'), Pn (6, Pa(8™)T,

Ly = Ly20°).
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These symbols are calculated, as is done in [20] for the transfer operators,

Lhe =3 > alhenmdtm (36)
uxed pyed

L 2000 _ H(Z) IZOSD//_X |2(900,u_y 37

H(20%) =) ) al@d v (37)
juxe€d pyed

fora)® , a/'® (see (3)).
The relatlon between smoothing and two-grid analysis becomes clear by comparing t

definition of the smoothing factor (29) and the definitionedf(34). Smoothing analysis

can be regarded as a simplified two-grid analysis, where we replacacthal coarse

grid operatoiC}! (31) by anideal operatorQf, which annihilates the low frequency error

components and leaves the high frequency components unchanged [20D{\6thviously

the coupling between the high and low frequencies is neglected. It is a projection operat

onto the space of high frequenci€}; can also be represented as a block matrix consisting of

4x 4 diagonal block®Q} (9). Regarding standard coarsenifg (8) looks for alld € G

like

0

~ 1
H — ) 38
ol . (38)

1
Then definition (29) is equivalent to
1= sup p(SO)QF (©) = sup p(®). (39)
0c6o0 0c6o0

3.4. Fourier Analysis Results

The equation on which we perform the Fourier analysis is Eq. (1) with fixed directions
aandb: a = cosg, b = sing. Angle 8 and parameter are to be varied. This test problem
is also used in [24], where Fourier smoothing analysis is done for many smoothers on tt
first-order upwind discretization of (1). Here, we ussecheme discretizations, like (3), and
mainly present results of Splitting 1.

We will give results for the symmetric alternating line smootl$emwhich was also
shown to be robust in [24] for the standard upwind discretization. In many cases (for man
anglesp) the alternating line smoother is already showing very satisfactory convergence
but the symmetric smoother is necessary for robustness over all ghdlbsee values of
k are testedk = 0,«x = 1/3, andk = —1. Two cases foe are evaluateds = 1073,

a relatively easy test case; and= 105, where the convection is really dominating.
For underrelaxation parameterwe also evaluate two values, = 1 andw = 0.7. We
show three representative values for anglfer the symmetric alternating line smoother,

B = 0,8 =45, andg = 60°. Other anglegs (>90°, for example) lead to identical
results for the smoother under consideration. We compare Fourier smoothing and two-gr
analysis results with numerical calculations for which we take W(0,1)-cycles (meaning ne
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Eigenmodes from Fourier smoothing analysis

FIG. 5. An example of local maximum eigenvalues from Fourier smoothing analysis due to infinite grid
“boundary conditionsh = 1/64 (Splitting 1).

presmoothing, 1 postsmoothing iteration). In the numerical calculations Dirichlet boundal
conditions are set. The discrepancy in boundary conditions between the analysis (infin
grid “periodic” boundary conditions) and the numerical experiments is reduced by the vel
fine grid used. In some casgs (30) gives a better prediction than An example, where

wp (removing the eigenmodes belongingfo= 0 ordy, = 0) gives a better prediction of
the actual convergence is the test case: 107, 8 = 0°, x = 0, andw = 0.7. Figure 5
showsp(0) VO € 9% from Fourier smoothing analysis, whesé9) is the maximum of the
amplification factors for the corresponding three high-frequency harmonics. It can be se
that only for6, = 0 does a local maximum appear, which is not observed in the multigric
convergence. The convergence with Dirichlet boundary conditions is better predigtgd by

In such a case we will mark the value @fin the tables below with ®. First we would
like to mention that applying standard line Gauss—Seidel smoothers directly on (3) lea
to smoothing factors larger than 1 (and multigrid divergence). This follows from Fourie
analysis and it is also observed in the numerical experiments.

An important observation follows from the two-grid Fourier analysis results. We observe
as in the standard upwind case considered in [4, 5], that the characteristic componel
which are constant along the characteristics of the advection operator, are not correc
approximated on the coarse grid. This phenomenon can be seen from the visualizatior
the eigenvalues from the two-grid Fourier analysis. Boe 45° these eigenvalues are
shown in Fig. 6 fore = 1073, where a maximum radius of 0.45 is observed along the
characteristic direction, and in Fig. 7 fer= 10-6, where maxima of 0.9 can be seen.

However, we do not observe this bad convergence predicted by the two-grid analy:
in our experiments (as in [5]), since we are studying “inflow/outflow” channel problems
and we are using line smoothers. The smoother on the finer grids then also takes care
these problematic error components. (In convection-dominant recirculating flow problen
we would use a Krylov acceleration technique [15] to improve the multigrid convergence

It means, however, that we cannot yse(34) as a reliable prediction of the multigrid
convergence. Since the spectrum is continuous, as can be seen in Figs. 6 and 7, it is
possible to remove some modes in order to estirpaterherefore, we will give forp*
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Eigenmodes from two-grid Fourier analysis
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FIG. 6. Large error components corresponding to low frequency harmonics along the characteristic compc
nents of the advection operat@, b)" = (1/+/2, 1,/2)" for ¢ = 103, following from two-grid Fourier analysis
for Splitting 1,h = 1/64.

in the tables below an “intuitive estimation” of the maximum,cc(ﬂ\/l,ﬁ) away from the
characteristic direction. We look for a local maximum at the boundary of the frequency
domain, not in the characteristic direction. It will be seen that this estimation is often &
good prediction for a multigrid convergence factor. A fine equidistant grid with mesh size
h = 1/256 is chosen i2 = (0, 1)2.
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Eigenmodes from two-grid Fourier analysis

"eigenmodgs” —
0725 -
0581 ..........
0437 -—-
0.293 -
09 - 0.149 -
08+
07+
06
051 A \\\\
04f AN \\\
03} 2 o“\\\&}
R SRR RN ».
g? S :‘s‘::s.‘ Sy "“::k&\‘, %
0 s :“ S

FIG. 7. Large error components corresponding to low frequency harmonics along the characteristic comp
nents of the advection operat@r, b)™ = (1/+/2, 1,/2)" for ¢ = 1078, following from two-grid Fourier analysis
for Splitting 1,h = 1/64.

The results from Fourier analysis are compared for the test cases mentioned with 1
multigrid convergence in Tables 1 and 2. In Table 1 results are presented=fot03,
in Table 2 fore = 10°%. The results from these tables are obtained with the alternating
symmetric KAPPA smoother from Splitting 1. With Splitting 2 results with= 0 are
identical, withx = 1/3 they are similar, but the results with= —1 are not robust. For
anglesg = 20° andg = 70° smoothing (and convergence) factors much larger than 1 are
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TABLE 1
A Comparison of Fourier Analysis Results with Multigrid Convergence for the
Convection-Diffusion Equation for e = 10~2 (Splitting 1), h = 1/256

e=103
k=-1 k=0 k=1/3

B =07 w=10 =07 w=10 =07 w=10
0 n 0.117 0.050 0.101 0.048 0.123 0.050
p* 0.124 0.051 0.113 0.059 0.140 0.060
W(, 1) 0.122 0.055 0.110 0.041 0.120 0.053
45 m 0.128 0.025 0.155 0.043 0.170 0.056
p* 0.139 0.028 0.162 0.10 0.173 0.047
W(, 1) 0.093 0.060 0.220 0.093 0.187 0.050
60 m 0.156 0.033 0.161 0.046 0.166 0.054
p* 0.194 0.027 0.185 0.058 0.164 0.046
W(0, 1) 0.183 0.053 0.200 0.094 0.168 0.058

always obtained. An average reduction factor over 100 iterations is taken as the multigri
convergence rate.

Also results from Fourier smoothing analysis witbintwiseKAPPA smoothers, based
on Splitting 1, show a very satisfactory smoothing behavior: Pointwise smoothers in th
flow direction will lead to very fast optimized multigrid methods for specific problems, and
four-direction point smoothers, where each step starts in a different corner of a rectangul
grid, will be robust for the convection—diffusion problem with respect to all angles

Tables 1 and 2 show that the smoothing fagt@r.p) and the (intuitive)two-grid factgs*
give a very good indication of the actual asymptotic multigrid convergence on the fine grid

TABLE 2
A Comparison of Fourier Analysis Results with Multigrid Convergence for the
Convection-Diffusion Equation for e = 1078 (Splitting 1), h = 1/256

e=10"°
k=-1 k=0 Kk =1/3

B w=0.7 w=10 w=0.7 w=10 w=0.7 w=10

0 I 0.283 0.00% 0.104 0.079 0.152 0.175
p* 0.283 0.004 0.104 0.080 0.153 0.175
W(0, 1) 0.277 0.001 0.100 0.080 0.145 0.176
45 I 0.226 0.057 0.365 0.177 0.432 0.289
p* 0.236 0.053 0.360 0.165 0.452 0.308
W(, 1) 0.320 0.050 0.420 0.180 0.407 0.277
60 I 0.347 0.107 0.473 0.220 0.567 0.326
p* 0.334 0.083 0.455 0.152 0.560 0.327
W(0, 1) 0.356 0.050 0.360 0.140 0.452 0.330
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The dependence of the convergence on different valuesegfor w is very well predicted

by Fourier analysis. Furthermore, the convergence of the W(0,1)-cycle is very satisfacto
Fore = 103 all convergence factors are smaller than 0.3fef —1 andk = 0 andw = 1
even smaller than 0.1. Also, for the difficult test case 10-® the convergence rates are
small, especially fok = —1. It appears thab = 1 (no underrelaxation) is best for the test
cases considered with the alternating symmetric KAPPA smoother.

Remark. Note that for the convection-dominated scalar problems the single grid lin
solvers (using the smoother as a solver) also give a very satisfactory convergence. For sc
problems with regions of dominating convection and diffusion, of course, multigrid is agai
necessary for good convergence. We will show the benefits of multigrid (compared to sing
grid) by analyzing the convergence of problems with a nonconstant convection direction
the the next section.

Remark. The spectral radiug is, of course, a measure of the asymptotic convergence
of a solution method. In case of convection-dominated problems (resulting in nonsymme
ric matrices) it might take a long time before asymptoticity is observed. As an alternativ
it makes sense to consider norms of the iteration matrix, as in [20], or half-space FM
estimates as a practical measure of convergence, as is done in [3]. We again refer to
problems in the next section to observe the actual convergence for some representative
problems.

We do not perform Fourier analysis for the alternating tri-line smoother from Section 2.2
but we apply this smoother to the same problems that are presented in the Tables 1
2. In Table 3 we show the multigrid convergence for the alternating tri-line smoother witl
w = 0.7 fork = 0, ¢ = 107 for different numbers of pre- and postsmoothing iterations.
The first column of Table 3 can be compared to the results in Table 2. In Table 3 we al
evaluate8 = 225, since for this smoother the results obtained are not angle-independer
as mentioned in Section 2.2. It is found that for all angles satisfactory convergence rest
are obtained also with the alternating tri-line smoother. From Table 3 it can be seen that
convergence obtained with the tri-line smoother is a bit worse than the convergence w
the symmetric alternating line smoother in Table 2 (which is to be expected). Furthermor
it can be seen that the multigrid convergence strongly improves when more smoothil
iterations are performed. The addition of one smoothing iteration has more than doubl
the multigrid convergence speed in the cases considered.

TABLE 3
Multigrid Convergence for the Alternating
Tri-line Smoother for the Convection—Diffusion
Problem with k = 0,e = 1078

B W, 1) W(0,2) W(1,2)

0 0.18 0.036 0.008
45 0.58 0.22 0.055
60 0.57 0.16 0.048

225 0.49 0.13 0.056
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FIG. 8. Spectrum of the multigrid iteration matrix with the alternating tri-line KAPPA smoothet, 10°°.
B=0,k=0h=1/32.

We would like to conclude with two pictures of the eigenvalue spectra of multigrid
iteration matrices for a problem investigated in this sectioa: (106, 8 = 0°,xk = 0)ona
32 x 32 grid. The first picture, Fig. 8, shows the spectrum obtained withtf®&1)-cycle
and the alternating tri-line KAPPA smoother with= 0.7. One sees the clustering around
the origin and a spectral radius of 0.1 on this relatively coarse grid.

The second picture, Fig. 9, is the spectrum found for the same problem with the classic
defect correction iteration. The first-order discretization, which is inside the defect correc
tion technique, is solved with high accuracy by a multigrid solver. In Fig. 9a completely
different spectrum is found without a clustering around the origin and a spectral radius ¢
0.5. The difference in spectra of Figs. 8 and 9 is remarkable.

4. NUMERICAL RESULTS

The problems in this section are solved with the multigrid methods described ir
Section 2.2. In some of the experiments we compare the convergence with the defe
correction convergence. The initial iterapfl is mostly obtained with the full multigrid
method (FMG). We fix the underrelaxation parametefior the different smoothers that
are evaluated here: The symmetric alternating KAPPA smoother based on Splitting 1
always used without damping = 1), the symmetric alternating KAPPA smoother based
on Splitting 2 uses underrelaxatian= 0.7, as both alternating tri-line KAPPA smoothers.
These values showed the best multigrid performance for the problems in the previol
section.
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FIG. 9. Spectrum of the defect correction iteration matrix with a multigrid solver for the inner iteration,
€e=10°% =0,k =0h=1/32.

4.1. Convection—Diffusion with Analytical Solution

For the first example we consider the convection—diffusion equation (1) with the conve
tive terms coming from the Smith—Hutton problem [17],

—€Ap + 2y(1 — Xy — 2X(1 — YAy = T, (40)

wheree is a small positive numbeg = 1076). This problem is interesting, since many
angles are encountered by the definitiora¢f, y) andb(x, y). This means that (40) is a
good indication for the robustness of a solver. The domain is chosen as

Q={(x,y);-1<x<10<y<1}. (41)

In the first example right-hand side and the Dirichlet boundary conditions are chosen
such that a smooth analytical solution results:

¢ =x*+y" (42)

A limiter is not necessary for this problem, and we can compare the accuracy of tt
k-schemes. The multigrid convergence is shown with the symmetric alternating KAPP
smoother(w = 1) and the tri-line alternating zebra KAPPA smoothier = 0.7) from
Splitting 1 on a fine gridhy, hy)" = (2/256, 1/128T. A multigrid V-cycle processing
seven levels is used with two pre- and one postsmoothing iterations. We present results
k = 0 andk = —1. Furthermore, in Figs. 10a and 10b the convergence of the classic
defect correction iteration is presented.
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FIG.10. The multigrid convergence of three approaches forthe Smith—Hutton problem with analytical solution
with (a)k = 0 and (b)x = —1; 256 x 128-grid.

The multigrid convergence with both KAPPA smoothers is very satisfactory: The bes
smoother converges within five multigrid iterations. The symmetric alternating line smoothe
is twice as fast as the tri-line smoother for this problem. For this smooth problem the im
provement in the higher order residual reduction, compared to the classical approache
for « = 0 is very satisfactory. It can be seen that the convergence of defect correctio
stops for the discretization with = —1. However, the difference ih,-norm between
the numerical solution and the analytical solution for the defect correction iteration an
the KAPPA smoothers is almost the same. Table 4 presents the number of iterations a
the wall-clock time needed to reduce the initial residual by six orders of magnitude. Thi
can be seen as an indication for the convergence in the initial stage of residual reductic
which is not indicated by a spectral radius. The wall-clock times are relatively large, since
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TABLE 4

295

Level Independent Convergence and Corresponding Wall-Clock Time in Seconds (in Brackets)
with Two k-Schemes for a Convection-Diffusion Problem with an Analytical Solution

Alt. symmetric smoother

Alt. tri-line smoother

Grid k=0 k=-1 k=0 k=-1
64 x 32 3(1.1) 3(1.1) 5(2.6) 6(3.2)
128 x 64 3(6.4) 3(6.4) 6 (11.8) 8(15.0)
256 % 128 3(24.9) 4(32.8) 7 (54.5) 9 (70)
512 256 3(102.5) 4 (136) 9 (286) 10 (320)

the implementation is not done most efficiently. The emphasize has been laid upon stor:
reduction, not on obtaining the best timings. Operator elements are recalculated on ev
grid, although the operator and the discretization are linear. It can be seen that with the sy
metric alternating line smoother a very fast and level independent convergence is obtair
for this test problem. (For these grid sizes, also the single grid solver is still very fast and

wall-clock time comparable to the multigrid convergence.) The number of iterations grow
somewhat for increasing grid sizes with the tri-line smoother. In Table 5, we can obser
the accuracy of the-schemes by comparing the numerical to the analytical solution on fine

grid sizes. We present the differencelig,-norm andL ,-norm and an estimation of the

discretization ordep. It can be seen from Table 5 that second-order accuracy is obtaine
for bothk-values. Further, it should be mentioned that the second-order accuracy is alrea

reached after one FMG cycle.

4.2. Convection—Diffusion with Discontinuous Boundary Condition

The second problem is also based on Eq. (40), the Smith—Hutton problent wti®
on domain (41). The difficulty comes from the boundary condition which looks like

1
Plag =2 Onaﬂi—é <x<05y=0

(43)
dlaa =0 elsewhere
TABLE 5
The Accuracy Achieved with thex-Scheme for a Convection-Diffusion Problem
with an Analytical Solution

k-Scheme Grid ol Pe ol P2

k=0 64 x 32 57486x 107 — 1.5095x 102 —
128 x 64 15041x 1073 1.93 31204x 104 2.27
256 x 128 40707x 10 1.88 71283x 10°° 2.13

k=-1 64x 32 91171x 103 — 2.8992x 1073 —
128 x 64 24513x 1073 1.89 63281x 10 2.19
256 x 128 65561x 10 1.90 14332x 104 2.14
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FIG. 11. The solution of the Smith—Hutton problem with discontinuous boundary condition.

The solution contains a step-like discontinuity which moves along the characteristics of th
advection operator. Limiters are really necessary to assure an accurate solution. Figure
presents the solution. Instead of investigating the sharpness of the discontinuity profi
with different limiters, as is done in many other papers like [17], or for other problems
for example in [16 or 14], we concentrate on the convergence of the multigrid solutior
methods. Again the multigrid convergence on the fine gnid hy)" = (2/256,1/1287

is investigated with V(2,1)-cycles. Here, we present results obtained with the alternatin
tri-line smoothers and evaluate the difference in convergence between the smoothers ba
on Splitting 1 and Splitting 2 for the limited discretizations. Often, for example, for several
systems of equations it is more expensive to compytethanl ¢, even on coarse grids.
Therefore, we test whether for this problem with a step discontinuity solution it makes
sense to use a discretization based.gmon the coarse grids as well. Figure 12 presents the
multigrid convergence results with two limiters from the first class of limiters, the ISNAS
limiter (9) (see Fig. 12a), the van Leer limiter (8) (see Fig. 12b), and one limiter from the
second class of limiters, the SMART limiter (11) (see Fig. 12c).

Very satisfactory convergence is observed from Figs. 12a and 12b. Especially the “eng
neering accuracyl(f — Lo¢™)|/|(f — L2¢®)| < 1078 is reached very fast. Furthermore,
it is observed that the difference in convergence wittas the coarse grid discretization is
not significant. Also we see that smoothers based on both Splitting 1 and Splitting 2 resu
in acceptable convergence on this fine grid. These results were found to be representat
for other limiters from this first class.

In Fig. 12c it is shown that for theR-based limiter SMART multigrid algorithms, based
on Splitting 2, have convergence problems. The smoothers based on Splitting 1 do n
show regular convergence, but the residual is reduced by six orders of magnitude after .
iterations, which is satisfactory. Further, we show for the ISNAS and the van Leer limiters
that for these scalar convection-dominated problems, it is not so easy to beat the single g
solver (using the smoother as a solver). Actually, only on very fine grids are the benefit
of multigrid (tri-line smoother, Splitting 2, full second-order formulation) solvers clearly
observed. The fastest multigrid solver is here the VV(0,1)-cycle in case of the van Leer limite
which is not level independent in convergence. The number of iterations of the single gri
solver on the 256 128 grid with the van Leer limiter until engineering accuracy is reached
is 39, taking 110 s. The V(0,1)-cycle took 26 iterations and 96.51sa @ times finer grid
the single grid solver takes 72 iterations in 831 s, while 42 iterations in 645 s are needed t
a V(0,1)-cycle (without nested iteration). For the ISNAS limiter, we find that the single grid
solver takes 44 iterations and 126 s; the V(0,1)-cycle takes 30 iterations and 110 s. On tl
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FIG.12. The multigrid convergence with the two splittings for the alternating tri-line smoother, Smith—Hutton
problem with discontinuous boundary condition, 26628 grid: (a) convergence with the ISNAS limiter (9):
(b) with the van Leer limiter (8); (c) with the SMART.



298 OOSTERLEE ET AL.

512 x 256 grid the difference is more pronounced: 76 iterations in 887 s for the single gric
solution method and 29 iterations in 758 s for the V(1,1)-cycle, which appeared to be faste
for the ISNAS limiter on this fine grid. On coarser grids the solution times for single and
multigrid solvers based on this alternating symmetric line solver are more or less identica

4.3. Nonlinear Problem with a Shock

We consider the following nonlinear convection-dominated conservation law:

¢2
—eAg + (7> +¢y=0 (44)

Again we pute = 10~% and boundary conditions are given along xaxis by

¢o = %(sin(nx) +1). (45)

This scalar nonlinear problem is also studied and described in detail in [16]. The computz
tional domainis2 = {(x,y); 0<x <3,0<y <2}
The exact solution is constant along the characteristic lipe$) " . For every pointx, y)
we can find a boundary pointd, 0), where the characteristic line goes through by solving
the implicit equationxg = X — ¢o(Xo)y. The solution becomes unique if we discretize
by a conservative finite volume discretization, i.e. if we satisfy the entropy condition for
hyperbolic conservation laws [16]. The solution shown in Fig. 13 will contain a shock wave
along the liney = 2x — 2. Limiters are necessary for an accurate solution of this problem.
We will investigate the multigrid convergence for the ISNAS and van Leer limiters
from class 1 and for the SMART limiter from class 2. Again a very fine grid is chosen
to see asymptotic convergenchy, hy)" = (3/384, 2/256)". The multigrid V(2,1)-cycle
is performed on eight multigrid levels. We chodsg as the coarse grid discretization in
this test and compare the alternating symmetric KAPPA smoother from Splitting 1 with
Splitting 2 and with the alternating tri-line smoothers. (The underrelaxation parameter
were given at the beginning of this section.) Figure 14a presents the convergence results

g

FIG. 13. Characteristic lines and shock wave for the nonlinear problem.
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FIG. 14. The multigrid convergence for the nonlinear problem containing a shock with the two splittings for
the alternating symmetric and the alternating tri-line smoother,x3886 grid: (a) convergence with the ISNAS
limiter (9); (b) with the van Leer limiter (8); (c) with the SMART limiter (11).
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TABLE 6
Convergence for the Nonlinear Problem with Two Limiters on
Different Grids, Splitting 2, Full Second-Order Formulation

Alt. symmetric smoother Alt. tri-line smoother
Grid v. Leer ISNAS v. Leer ISNAS
96 x 64 12 10 12 10
192x 128 14 14 16 15
384 x 256 16 21 22 26

the discretization with the ISNAS limiter, Fig. 14b shows convergence with the van Leel
limiter, and Fig. 14c shows convergence with the SMART limiter.

A similar convergence as for the previous Smith—Hutton problem can be seen in th
Fig. 14. Splitting 2 gives a somewhat better convergence for the limiters from class 1 tha
Splitting 1. Furthermore, the behavior of the symmetric and the tri-line smoother is similal
to the previous problems. In the worst case 10 extra multigrid iterations are necessary f
the parallel variant.

For the SMART limiter again the convergence stops with smoothers based on Splitting -
whereas better convergence is obtained with the smoother from Splitting 1. The difference
convergence between discretizations based on limiters from class 1 and class 2 is remarkal
The difference in accuracy with different limiters on these fine grids is relatively small. The
convergence until engineering accuracy is reached on several grids is presented in Table
Although the convergence is not fully level independent, it is considered very satisfactor
especially for the symmetric alternating line smoother. Finally, the single grid solver behave
for this convection-dominated nonlinear scalar problem similarly as for the Smith—Huttor
problem from the previous subsection.

4.4. An Incompressible Navier—Stokes Driven Cavity Example

Next, an incompressible flow example is treated. The 2D steady incompressible Naviel
Stokes equations are written as a system of equations as

of oag of, odgy
—+—=—+ —, 46
aX + ay  0X + ay (46)

wheref andg are the components of the convective flux vector,farahdg, are the viscous
fluxes:

u?+p uv = 9u/dx 2 9u/dy
f=1] w |, g=|v¥+p|. fu=|mxdv/ox|. o =|adv/dy
cu cv 0 0

Hereu andv are Cartesian velocity unknownp,is pressureg is a constant reference
velocity, and Re is the Reynolds number defined asRé¢ - L /v, with U a characteristic
velocity, L a characteristic length, andthe kinematic viscosity.
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We solve the incompressible Navier—Stokes equations in the primitive variables. Tt
2D vertex-centered discretization of (46) (on a collocated grid) is Dick’s flux difference
splitting, presented in [6]. The resulting stencil from a first-order discretization looks like

T — A+ 2ud + vdy— udy— Bx— .
h 2?42 huy h 1 AV v+ |y|
2 <|U|3yy + \/“ﬁaxx) mtre (VP —oDdy (\/maxx T e 8yy)
Vi — — & A 4 udy + 2vdy— dy—
huy h 20242 hy 1 u2+c2—|u| ’
s VP — Wi G (lulo+ 20, ) (i + LM,
c20,— c2dy—
hc2u ) hcv 5 ﬁ 1 ) + 1 )
- w/uizre 2oz VY 2\ Jure T S V) -

(47)

where the three entries are fan, v, p)T, respectively. Here® represents a central dis-
cretization; the term8,, anddyy are artificial dissipation terms.

Second-order accuracy is achieved by replacing the first-order convective discretizatic
which is implicitly in (47) by (3) withx = 0. Then, the resulting stencil is similar to (47)
with higher order artificial dissipation terms. For incompressible Navier—Stokes equatiol
it is not necessary to implement a limiter. For many different (2D and 3D) problems at lo
and high Reynolds numbers oscillations (for example, in the pressure distribution, as th
occur near discontinuities for compressible flow problems) did not appear.

A well-known 2D test case is the lid-driven cavity flow in a unit square. Although
this problem is a rotating flow problem for which standard multigrid schemes might hav
convergence difficulties, we do not observe these difficulties, since a moderate Reyno
number (Re= 1000) is evaluated here. We solve this problem on & 88 with stretching.
With the 192 stretched grid the centerline velocity profiles agree very well with reference
results from [9]. (A very similar profile is already obtained by solving the problem on &
64 x 64 equidistant grid.) Figure 15 presents the u-velocity profile in the vertical centerlin
of the cavity.

The multigrid FAS scheme used for solving this problem is the same as for the scal
problems. The KAPPA smoother is navcoupled collectivesymmetric alternating line
smoother and a coupled collective alternating tri-line smoother, which means that the thr
unknowns belonging to a grid point are smoothed simultaneously. For line smoothers tt
means that not only a tri-diagonal system, but a system with more diagonals (referring to
unknowns on the line) is solved in a smoothing iteration. (Since we choesé we have
identical smoothers from Splitting 1 and Splitting 2 and the discretization from (47) is in thi
left-hand side of the KAPPA smoothers. The underrelaxation parameters are the same
presented above; = 1 for the symmetric ané = 0.7 for the tri-line smoother.) Because
of the rotating problem, we perform F-cycles. For the symmetric smoother F(1,0)-cycles a
used, while for the tri-line smoother F(1,1)-cycles are used. Note that the alternating tri-lir
smoother is now twice as expensive as the alternating symmetric smoother. The converge
of the residualy_:%% |r'(™|, (where the number of equationsq = 3) is presented in
Fig. 16, where we also compare the coarse grid discretizationlwitind withL ;.

It can be seen that a very fast multigrid convergence is obtained for this test proble
with the alternating symmetric KAPPA smoother with-coarse grid discretizations. Here,

a difference in convergence can be observed between chobsiog L, as coarse grid
discretization; choosing, results in fastest convergence. Also the difference between the
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FIG. 15. The u-centerline velocity profile for first- and second-order accurate discretizations versus referenc

values from [9].

symmetric and the tri-line smoother is clear, but the worst convergence presented here
still very satisfactory. We give the wall-clock times needed to perform the computations
that lead to the curves in Fig. 16 which is the time to perform 10 multigrid cycles plus FMG
for the starting solution on the finest grid. The timings are performed on a single RS600
workstation. For 10 F(1,0)-cyclestEMG) with the symmetric collective smoother and

1000 T T T T 3
[ Alternating symmetric KAPPA smoother; cg=L2 -e—
Alternating symmetric KAPPA smoother; cg=L1 -+-- 4
100 | e Alternating tri-line KAPPA smoother; cg=L2 -&--
[ n Alternating tri-line KAPPA smoother; cg=L1 - ]
10 |
1
= 0.1 |
=3
2 [
= 0.01
0.001 | D E
R 32 p
G ]
S 1
0.0001v - N T el ji
""" [ ]
1e-05 |- R
1e-06 L L L L
o 2 6 8 10
cycles

FIG.16. The multigrid convergence for the driven cavity probl@Re = 1000 with the alternating symmetric
and the alternating tri-line smoother for 192192 stretched grid.
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TABLE 7
Number of Iterations and Wall-Clock Time (s) for
Reducing the Initial Residual by Six Orders of Mag-
nitude for Driven Cavity Problem at Re = 1000

Grid No. its. Wall-clock time (s)
642 15 (58.0)

128 10 (156.0)

192 8 (284.0)

256 8 (505.0)

the L, coarse grid discretization 398 s are needed; for 10 F(1,0)-cycleslwitparse
discretizations 322 s are needed. The 10 F(1,1)-cycles with the tri-line collective smooth
andL , coarse grid discretizations took 700 s and vidgfcoarse discretizations it took 570 s.

Finally, we would like to show the convergence with increasing grid sizes for this prob
lem with the symmetric alternating line smoother and the full second-order formulatior
Therefore, we here consider the convergence énB2¥, and 256 grids without stretch-
ing. In Table 7 the number of iterations needed to reduce the initial residual by six orde
of magnitude is presented, and the numbers within brackets correspond to wall-clock tir
(the FMG stage included). Due to improving mesh-Reynolds numbers (local ratio betwe
convection and diffusion) the convergence improves for increasing grid sizes, as can
seen in Table 7. The single grid convergence for this problem is very poor; the wall-cloc
times are not comparable to the multigrid wall-clock times.

4.5. An Euler Channel Flow Problem

A last example is the compressible Euler flow in a channel with a bump. The 2D steac
compressible Euler equations are written in their differential form as

pu pU
af(w agw) 3 | pu?+p SN T L I
X y  ax puv dy | pv*+p |
(E+ puu (E+ pv
1
p=(y —D(E— ép(u2+v2)), (48)

wherep is the densityy andv are the Cartesian velocity componeriss the total energy,
p is the pressure, and(assumed to be constant) is the ratio of the specific heats at consta
pressure and constant volume.

The vertex-centered finite volume discretization adopted for the Euler equations is d
scribed briefly. Itis based on the cell-centered discretization in [18, 13]. For the finite volum
discretization the domaif is divided into control volumeg; ;. For each quadrilateral (48)
must hold in integral form,

7{ (f(Wny + gWny) dS=0, (49)
BQ,_J



304 OOSTERLEE ET AL.

where (ny, ny)T = (cos¢, sing)T is the outward normal vector o j andu is the
state vector. The rotational invariance of the Euler equations is used, and the discretizati
results in

> Fu-u®ask=0 (50)

(iK)ek(ik)

with k(ik) being the set of neighboring cells 6 j, 9Sk is the length of the boundary
betweer2; j andQiy; F (ut, uR) is an approximate Riemann solver, which depends on the
left state,u-, and the right stateyR, along the cell boundary. The discretization requires a
calculation of the convective flux at each cell fa ;. The approximate solutioR(u®, u®)

of the 1D Riemann problem is solved with an approximate Riemann solver proposed b
Osher in its P-variant (for more details see [18, 13]),

Fub,u®) = %<?(uL>+ (ﬂuR)—/ |A(u)|du>, (51)

where |A(U)|(= AT(u) — A=(u)) is a splitting of the Jacobian matri& into matrices
with positive and negative eigenvalues ahi the one-dimensional flux along the normal
vector. State vectan = (u, v, ¢, 2)" is chosen, where = \/yp/p is the speed of sound
andz = In(pp~7) is an unscaled entropy.

The statesi®, ; /2] anduf /2,j in (51) are approximated by a discretization with van Leer
limiter (8) in order to avoid oscillations that may appear near shocks.

A transonic problem (Ma= 0.85) in a channel with a bump is evaluated. The bump
in the channel is a 4.2% circular bump, the height of the channel is 2.1. Its length is 5
the bump length is 1. The pressure distribution of the transonic test is presented in Fi
17. The domain is discretized with 96 64 cells, which results in a multigrid method
with five levels. With the smoother from Splitting 2 the second-order discretization for
the Euler equations is solved directly with V(2,1)-cycles. The smoother from Splitting 2
showed the best convergence results for discretization with limiters from class 1. Again w
compare the multigrid performance with coarse grid discretizations based with L,

FIG. 17. The pressure distribution for the transonic test #8.85 for 96 x 64-grid.



SMOOTHERS FOR CONVECTION-DOMINATED PROBLEMS 305

T T T T T
Alternating symmetric KAPPA smoother; cg=L2 -o—
Alternating symmetric KAPPA smoother; cg=L1 -+--
N Alternating tri-line KAPPA smoother; cg=L2 -8--
1F RPN Alternating tri-line KAPPA smoother; cg=L1 - <
D
=
8 0.01 | -
g
0.0001 | B
1e-06 |- -1
e .
X
e I .
10-08 | x ]
G-, e
“ue '1:11
~ R
1e-10 | V‘ \:‘n- g--a
1 I I i Il \3' f
o 5 10 15 20 25 30

cycles

FIG.18. The multigrid convergence for a transonic Euler exanilla = 0.85) with the alternating symmetric
and the alternating tri-line smoother for 9664 stretched grid.

and the alternating symmetric smoother with the alternating tri-line smoather Q.7).
Figure 18 presents the convergerce™ [r'™ |, with ieq = 4 andm as the multigrid
iteration.

For this Euler test, where a shock appears in the solution, similar convergence is obtair
as for the scalar problems with the van Leer limiter. It appears to be best for this test proble
also to adopt thé ; discretization on the coarse grids. The convergence is very satisfactol
for both the alternating symmetric and the alternating tri-line smoother. Table 8 preser
the number of iterations to reduce the initial residual by six orders of magnitude plus tf
corresponding wall-clock time on different grids. Here we would like to mention that the flu
difference splitting is not implemented in the most efficient way, which strongly influence
the wall-clock times. One can observe level-independent convergence from Table 8 for tl
transonic Euler problem. Here, the single grid convergence is poor and not comparable
the multigrid convergence.

TABLE 8
Number of Iterations and Wall-Clock Time (s) for Re-
ducing the Initial Residual by Six Orders of Magnitude
for Transonic Euler Channel Problem at Ma = 0.85

Grid: No. its. Wall-clock time (s)
48 x 32 10 (123.0)
96 x 64 11 (511.0)

192x 128 10 (1844.0)
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5. CONCLUSION

We have presented KAPPA smoothers for convection-dominated problems. Th
smoothers are based on a splitting into a “positive” part in the left-hand side and a remainir
part in the right-hand side. For lineatdiscretizations, we have performed Fourier analysis
for a convection-dominated convection—diffusion equation in order to study the multi-
grid convergence behavior theoretically. Furthermore, a parallel variant is presented ar
evaluated. In general, it is preferable to use the line smoothers based on lexicographic
ordering compared to the tri-line variant. The KAPPA smoothers show a very promis.
ing multigrid convergence with lineardiscretizations, not only for convection—diffusion
problems, but also for an incompressible Navier—Stokes flow problem. Next to krear
discretizations also TVD discretizations with limiters are evaluated for “difficult” scalar
equations and for a compressible Euler channel flow problem. Also here the convergen
presented is very satisfactory; the reduction of the residual from the higher order dis
cretization is remarkable. We could observe a fast and robust convergence for several prc
lems, especially for discretizations with limiters from class 1. The single grid convergenct
for the scalar convection-dominated problems is also satisfactory on not too fine grid:
Many tests with two different splittings, choosing the coarse grid discretization with the
first-order or the second-order discretization, and the comparison between the alternati
symmetric and the alternating tri-line smoother gave much insight in the behavior of the
smoothers.
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